

Scanned by TapScanner

Scanned by TapScanner

Example: Let X be a random Variable with the CDF given as: X < -3 3 CDF Fx(X) = 1 0.2 -3 < X < 0 - G H OSXCI 1 × × Assume P(X>0)=0.3 a) Determine the values of the constants K, G, and H. fx (-00) = 0 = 0 - 00 < -3 < x : [R=0] Fx(00)=1=0 00>1>x We know that :- P(X70) + P(X < 9) = 1 de Jan vix But it is given in the question that,-P(X>0)=0.3sls 381 20 JAMSI (NI/15/8192) expreint 1001 - jeel (sohit (VI) : P(X70)+P(X50)=1 (1= loulis) : P(X < 0) = 1 - P(X > 0) = 0.7 = P(X < 0) = P(X < 0) = G : G=0.7

Scanned by TapScanner

$$P(-3 < x < 1) = ??$$

$$P(-3 < x < 1) = P(x < 1) - P(x < 3) = f(1) - f_x(-3)$$

$$= 0.8$$

$$P(-3 < x < 1) = ?$$

$$P(-3 < x < 1) = P(x < 1) - P(x < 3)$$

$$= f(1) - f_x(3)$$

$$= 0.7 - 0.2$$

$$= 0.5$$

$$P(-3 < x < 1) = P(x < 1) - P(x < -3)$$

$$= f_x(1) - f_x(-3)$$

$$= f_x(1) - f_x(-3)$$

$$= 0.7 - 0$$

$$= 0.7 - 0$$

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Variance of X &= Var {x} = E {(x-Mx)} districte DD \(\times \left(\times \left(\times \left(\times \left(\times \left(\times \times \right) \right) \(\times \left(\times \times \times \right) \) if on the and (X-Mx) of (X) dx A Standard deviation of X -D Varioned 86100 as Q = 1 0 2 Standard [[] , in 1 - Cas deviortor.

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

$$\frac{1}{3} = \int_{32}^{2} x \int_{1}^{2} x dx = \int_{32}^{2} x + \frac{3}{32} (4-x^{2}) dx$$

$$= \frac{3}{32} \int_{1}^{2} (4x - x^{3}) dx = \frac{3}{32} \left[2x^{2} - x^{4} \right]_{-2}^{2}$$

$$= \frac{3}{32} \left[(8 - \frac{16}{4})^{2} (8 - \frac{16}{4}) \right] = 0$$

$$\frac{3}{32} \left[(8 - \frac{16}{4})^{2} (8 - \frac{16}{4}) \right] = 0$$

$$\frac{3}{32} \left[(8 - \frac{16}{4})^{2} (8 - \frac{16}{4}) \right] = 0$$

$$\frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right] = \frac{3}{32} \left[(4 - x^{2})^{2} dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3}{32} (4 - x^{2}) dx \right]$$

$$= \frac{3}{32} \left[(4 - x^{2})^{2} + \frac{3$$

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Theorems let X be arandom variable with mean 1/x and variance 6%. Define /= ax + b; (a) and (b) are real constants then; @ My-aMx +b $Q) 6y = a^2 6x^2$ Less let X be a R.V with mean of 2 and Variance of 4. Y=3X-5 is a new R.V. Determine the mean and variance of Y? Note: - Y= ax+b - Odshalledous ou généralisa ou . My = E {y} = E {ax+b} = S(ax+b) f(w) dx bff(x) dx = affxf(x)dx + = allx + b*1 My = aMx+b 6y= E&(V-My) = E. 2(ax+16) E { a2 (x-Mx) } = E {ax-ally} } = 02 EE(x-4x)23) "4; -a" constant si elb's leve - vier $6y^2 = a^2 6x$ 160/04

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

$$P(x-2) = \binom{3}{2} \binom{1}{4}^{2} \binom{3}{4}^{2} = 3 * \frac{1}{6} * \frac{3}{4}^{2} = \frac{9}{64}$$

What is the probability of getting at least one head?

$$P(x=x) = \binom{3}{x} \binom{1}{4}^{x} \binom{3}{4}^{3-x}, x = 0, 1, 2, 3$$

$$P(x>1) = P(x=1) + P(x=2) + P(x=3)$$

$$OR = 1 - P(x<1) = 1 - P(x=0)$$

$$= 1 - \binom{3}{6} \binom{1}{4}^{3} \binom{3}{4}^{3}$$

$$= 1 - \frac{27}{64}$$

$$= \frac{37}{64} + \frac{47}{64}$$

$$= \frac{9}{64} + \frac{1}{9} + \frac{1}{$$

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

DI The Geometric Distribution 02025 B) (m) (2/1/8/6) B) Sti 1/251, Sti corperiments of outcomes posts (binomin) (vio) of old of independent Probability of failure Probability of success Number of trials to the Jimi R.V(x) Sirst success FFF F S X: number of trials to the first success P(X=5) = P(F) P(S) 4 Successols ded Wanden 8,6000 seed 136 550 3 : P(X=2)=P(F)X-1 P(S) - 6 pt 8/8/ failure 1/5/90/0 de al P II año lo Vies ção · EN3) 6th success e 6005 (5) gld light 118 0) p5 applo -: Greometric I cdf Probability of failure US. No New Success de dep i Justino ji & 6 X=0 @ lo d sigo ((Zero Kials) 03.89 pa success de dept cs! X=0 cies,
successols dept nins 6001, 500 pl uset rix 6 dutino 6. W) I'm S Zim [X=0] 16 00

Scanned by TapScanner

Scanned by TapScanner

Scanned by TapScanner

TV Poisson Process: notes is to see just about de Mx = 1 6x = 1 6x = 1 6x

Poisson Process:

Consider a counting process in which events occur at a rate of (λ) occurrence per unit time. Let X(t) be the number of occurrences recorded in the interval (0, t), we define the Poisson process by the following assumptions:

- 1- X(0) = 0, i.e., we begin the counting at time t = 0.
- 2- For non-overlapping time intervals $(0, t_1), (t_2, t_3)$, the number of occurrences $\{X(t_1) X(0)\}$ and $\{X(t_3) - X(t_2)\}$ are independent.
- 3- The probability distribution of the number of occurrences in any time interval depends only on the length of that interval.
- 4- The probability of an occurrence in a small time interval (Δt) is approximately ($\lambda \Delta t$).

$$X(t_0)$$
 $X(t_1)$ $X(t_2)$ $X(t_3)$ $t = 0$ t_1 t_2 t_3

Using the above assumptions, one can show that the probability of exactly (x) occurrences in any time interval of length (T) follows the Poisson distribution and, 四人。今年一一一

$$P(X=x)=e^{-\lambda T}\frac{(\lambda T)^x}{x!}$$
; x=0,1,2,3,.....

$$x = 0, 1, 2, 3, \dots$$

Theorem:

Let (b) be a fixed number and (n) any arbitrary positive integer. For each nonnegative integer (x):

$$\lim_{n\to\infty} \binom{n}{x} (p)^x (1-p)^{n-x} = e^{-b} \frac{b^x}{x!} \qquad ; \text{ where } p = b/n$$

EXAMPLE (3-21):

Messages arrive to a computer server according to a Poisson distribution with a mean rate of 10 messages/hour.

- a- What is the probability that 3 messages will arrive in one hour.
- b- What is the probability that 6 messages will arrive in 30 minutes.

SOLUTION:

 $a - \lambda = 10 \text{ messages/hour} \rightarrow T = 1 \text{ hour}$

$$P(X = x) = e^{-10x1} \frac{(10 \times 1)^x}{x!} = e^{-10} \frac{(10)^x}{x!}$$
; $x = 0, 1, 2, 3, ...$

$$P(X = 3) = e^{-10} \frac{(10)^3}{3!}$$
b- $\lambda = 10$ messages/hour \Rightarrow $T = 0.5$ hour
$$P(X = x) = e^{-10x\frac{1}{2}} \frac{(10 \times \frac{1}{2})^x}{x!} = e^{-5} \frac{(5)^x}{x!} \quad ; \quad x = 0, 1, 2, 3, \dots$$

$$P(X = 6) = e^{-5} \frac{(5)^6}{6!}$$

EXAMPLE (3-22):

The number of cracks in a section of a highway that are significant enough to require repair is assumed to follow a Poisson distribution with a mean of two cracks per mile.

- a- What is the probability that there are no cracks in 5 miles of highway?
- b- What is the probability that at least one crack requires repair in ½ miles of highway?
- c- What is the probability that at least one crack in 5 miles of highway?

b-
$$\lambda = 2 \text{ cracks/mile}$$
 \rightarrow T_{eff} , 5 mile

$$P(X = x) = e^{-2x\frac{1}{2}} \frac{(2 \times \frac{1}{2})^{x}}{x!} = e^{-1} \frac{(1)^{x}}{x!} = \frac{e^{-1}}{x!} ; \quad x = 0, 1, 2, 3, \dots$$

$$c-\lambda = 2 \text{ cracks/mile}$$
 \rightarrow $T = 5 \text{ miles}$

$$P(X = x) = e^{-2\times 5} \frac{(2\times 5)^{x}}{x!} = e^{-10} \frac{(10)^{x}}{x!} \qquad ; \quad x = 0, 1, 2, 3, \dots$$

$$P(X \ge 1) = \sum_{x=1}^{\infty} \frac{e^{-10}(10)^x}{x!} = [1 - P(X = 0)] = 1 - e^{-10}$$

EXAMPLE (3-23):

Given 1000 transmitted bits, find the probability that exactly 10 will be in error. Assume that the bit error probability is $\frac{1}{265}$.

SOLUTION:

X: random variable representing number of bits in error.

Exact solution:

P(bit error) =
$$\frac{1}{365}$$
; Number of trials (n) = 1000

Required number of bits in error (k) = 10

$$P(X=10) = {n \choose k} (p)^k (1-p)^{n-k} = {1000 \choose 10} \left(\frac{1}{365}\right)^{10} \left(\frac{364}{365}\right)^{990}$$

Approximate solution:

$$P(X = x) = e^{-b} \frac{b^{x}}{x!} \qquad ; b = n p = 1000 \times \frac{1}{365} = \frac{1000}{365}$$

$$P(X = 10) = e^{-b} \frac{b^{10}}{10!}$$

Exercise:

Perform the computation and compare the difference

Scanned by TapScanner

Scanned by TapScanner

